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Chaotic dynamics in shear-band-mediated plasticity of metallic glasses
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The chaotic dynamics describes how a small change of initial conditions can result in a large difference in a
deterministic nonlinear system, i.e., the “butterfly effect.” Through a combination of experimental and theoretical
analysis, here we showed unambiguously that the deformation of metallic glasses (MGs) exhibits such an effect
where the experimentally observed plasticity displays a large plasticity fluctuation under the normally same
conditions. The “butterfly effect” for the plasticity of MGs is related to the chaotic dynamics of a shear band,
evidenced by the existence of a torus destroyed phase diagram, a positive Lyapunov exponent, and a fractional
Lyapunov dimension. Physically, the chaotic shear-band dynamics arises from the interplay between structural
disordering and temperature rise within the shear band, which could lead to an uncertainty in the appearance
of the critical condition for runaway shear banding events. Our results provide a perspective on the plasticity
of MGs from the viewpoint of complex dynamics and are also important for evaluating the plastic deformation
properties of MGs in practical applications.
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I. INTRODUCTION

Arising from the long-range disordered atomic structure,
the plastic flow of metallic glasses (MGs) or other disordered
solids is completely different from that of crystalline materials
[1,2]. At atomic scale, the plastic flow of MGs is found to
initiate from some loosely packed atomic-scale regions or
soft spots [3–5], which are often correlated by long-range
elastic interactions and thus can be organized into cascade or
avalanchelike events [6,7]. After plastic yielding, these local
regions could further concentrate plastic strain, ultimately
resulting in strong flow localization, i.e., the plastic strain is
highly localized into shear bands [8,9]. The shear banding
process could have a profound effect on their macroscopic
mechanical behavior. One direct consequence is that a shear
band tends to become runaway with the work softening during
deformation [10], resulting in the catastrophic failure of MGs.
As a result, the poor ductility/plasticity of MGs has become
one of main obstacles impeding their widespread applications
[11–13]. Meanwhile, the plastic shear of MGs also resembles
many important phenomena in natural science and engineer-
ing, such as lubrication [14], friction [15], and earthquakes
[16]. Despite the fundamental and engineering importance, a
comprehensive understanding on the plastic flow process and

*These authors contributed equally to this work.
†renjl@zzu.edu.cn
‡whw@iphy.ac.cn

its correlation with the macroscopic plasticity in MGs are still
lacking.

The dynamics of shear banding process has an important
effect on the macroscopic plasticity of MGs. Under tension, a
shear band will quickly propagate and become unstable under
a tensile stress, leading to almost zero plastic deformability
of MGs. However, some MGs could display some plasticity,
where a shear band often proceeds in a stable and intermittent
manner [17–19]. It was found that there is a close correlation
between shear-band stability and the overall plasticity in MGs.
Extensive studies showed that the instability of a shear band is
controlled by a critical parameter, such as a critical shear ve-
locity or a critical elastic energy density released during a ser-
rated event [20,21]. The shear-band instability was also shown
to depend on various intrinsic material properties and extrinsic
experimental factors, e.g., chemical composition [22], sample
size [23,24], loading rate, and even testing machine stiffness
[25,26], which ultimately affect the plasticity of MGs. The
shear band also has a thickness ranging from a few nms to at
least 200 nms depending on the plastic strain [27], indicating
a strong sensitivity of the shear band instability or the final
plastic strain on the mechanical boundary conditions. There
is also some evidence showing that the plasticity of MGs is
closely related to the shear-band dynamics, i.e., the chaotic
dynamics or self-organized critical dynamics [28,29]. To ac-
count for these effects, a number of phenological theories or
criteria were proposed, such as the Poisson’s ratio criterion
for the intrinsic plasticity of MGs [22] and the shear-band
instability index [10,25].
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FIG. 2. Time series analysis on the stress-time/strain signals of Vit105 MG. (a) A typical stress-strain segment for time series analysis.
(b) The calculated correlation integral lnC(r) versus the distance r, plotting in the log-log form, for the embedding dimension d = 14–18. The
data points can be well fitted by the equation C(r) ∼ rμ with the fitting exponent μ = 1.05.

of Weibull modulus m often indicates a large variability of
the material property and vice versa. Here, the values of m
by fitting the plasticity data is about 1.14, which is lower
than that reported for other MGs in previous studies [30]. The
low value of m found here indicates the significant variability
on the shear-band instability for the present MG. We also
performed the statistics on the exothermic enthalpy of the
sub-Tg relaxation, 
He, and the yield strength σy over these
specimens (for details see Figs. S4 and S5 in SM [37]). One
can see that the distribution of both 
He and σy are well fitted
by the Weibull function. The value of Weibull modulus m,
by fitting the 
He data for the current Vit105 MG is 5.42,
which is very close to that of Zr65Cu15Ni10Al10 MG (m ∼ 4.1)
reported by Yu et al. [30]. The fitting value of m for the
σy data of Vit105 MG is 24.2, which is smaller than that of
Zr65Cu15Ni10Al10 MG (m ∼ 41.2), but is comparable to that
of the brittle (Zr48Cu45Al7)98Y2 MG [43]. Both 
He and σy

are related to the free volume content in the as-cast samples
[44]. The value of m for 
He and σy are much larger than that
of plasticity, indicating the high uniformity of the initial free
volume contents over as-cast MG samples. There seems no
structural reason for the observed large plasticity fluctuation.

B. Time series analysis on stress-time curves

In the plastic deformation regime, the MG exhibits ob-
vious serrated flow behavior after yielding, as can be seen
in enlarged segments of stress-time/strain curves [Fig. 2(a)].
The serrations are characterized by repeated cycles of sudden
stress drops followed by slow upward elastic loading. As
extensively studied in literature [17,28,45], serrated flow is
closely correlated with the intermittent shear banding process
in MGs. Especially for those MGs deformed by a single dom-
inant shear band, serrated flow has been shown to arise from
the stick-slip motion of the band along the primary shear plane
[26]. To uncover the underlying shear band dynamics, we
performed nonlinear time series analysis on serrated stress-
time signals. The method is particularly useful to extract the
hidden dynamic information of a system from its irregular
time noise series. Here, we calculated two parameters: the
correlation dimension and the Lyapunov exponent, which are
often used to quantify the strange attractor with self-similar

properties and the sensitivity to initial conditions of the system
[46], respectively. Given a scalar time series measured in units
of sampling time δt[x(k), k = 1, 2, 3, ...N], one can construct
d-dimensional vectors: Yk = [x(k), x(k + τ ), ..., x(k + (d −
1)τ )], where τ is the delaying time and can be obtained from
the autocorrelation time or from mutual information [38]. The
correlation integral is calculated as [47] (see Methods for
details):

C(r) = 1

Np

∑
i, j

�(r − |Yi − Yj |), (1)

where � is the step function and Np is the number of vector
pairs summed. For a self-similar attractor C(r) ∼ rμ in the
limit of small r, where μ is the correlation dimension. The
Lyapunov exponents are calculated by the Wolf’s method
[40]:

λ1 = 1

tM − t0

M∑
k=1

ln
L′(tk )

L(tk−1)
. (2)

Here, M is the total number of repeated steps. L′(tk ) and
L(tk−1) are two distances defined in Methods. For the dy-
namical system, the spectrum of Lyapunov exponents can be
calculated by Benettin algorithm [48], which is equivalent to
Wolf’s method. Then Lyapunov dimension can be obtained by
[41],

DL = j +
∑i= j

i=1 λi

|λ j+1| , (3)

where j is the largest integer such that
∑i= j

i=1 λi � 0.
With equations above, we analyzed a typical serrated

stress-time curve of Vit105 MG. Figure 2(b) displays the
variation of correlation integral, C(r) with the distance r for
different embedding dimensions. It can be seen that the slopes
of lnC(r) versus lnr converge to 1.05 as the embedding dimen-
sion reaches d = 14. Thus the correlation dimension is taken
to be μ = 1.05, indicating the self-similar strange attractor
for time-stress signals. In addition, the calculated Lyapunov
spectrum also exhibits positive maximum exponents (λ1 =
0.0321). The existence of a finite correlation dimension and a
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stable positive Lyapunov exponent strongly suggests that the
serrated stress signal has chaotic dynamics.

C. Theoretical modeling and analysis

We attempt to understand the above results from the com-
plex dynamics of a single shear band. This is consistent with
the experimental facts that the deformation of most MGs are
mainly dominated by a single primary shear band during
compression [17,45]. The first step is to construct a set of
dynamic equations of the shear band, which can fully describe
its motion and internal evolution. Previous studies [26,49]
have proposed a stick-slip dynamic model to explain the
origin of serrated flow in MGs. The model considers that
the elastic energy released in the sample-machine system as
the driving force for shear-band motion, while the plastic
energy is mainly dissipated as configurational entropy or
structural disordering within the shear band. The dynamic
equations in the model are written as [26]:

dσb

dt
= k(v0 − λbε̇b), (4)

dχ

dt
= ε̇bσb

c0

[
1 − χ ln(ε̇c/ε̇b)

χw

]
, (5)

where v0 is the loading rate, k is the effective elastic constant
of sample-machine system, χ is the effective disorder temper-
ature, and σb and ε̇b are the stress resistance and strain rate in
the shear band, respectively. χ is the effective disorder temper-
ature [49], which describes the internal state evolution within
the shear band. χ could reach a stable state χw/ln(ε̇c/ε̇b)
for a constant ε̇b. The definition of other parameters can
be found in Ref. [24]. The constitutive relation between ε̇b

and σb is given by the cooperative shear model (CSM) [50]:
ε̇b = ε̇sexp(−1/χ )exp[−W0(σb0 − σb)(3/2)/(kBT )], where W0

and σb0 are the critical energy barrier for shear transformation
zones (STZs) and the yield strength of the glass at 0 K, re-
spectively. The term exp(−1/χ ) is proportional to the number
density of STZs.

The above model could predict the appearance of serrated
flow for shear banding, which is related to a critical stiffness
parameter. However, the serrations calculated by this model
only have a periodic solution with a fixed size. To fully reveal
the complex shear-band dynamic, here we extend the above
model by considering the temperature evolution within the
shear band. In principle, there should be some temperature
gradient within a shear band from its center to boundaries.
Here, we assume the shear band as a thin layer with homoge-
neous temperature distribution. In this case, the flow of heat
energy (per unit time and per unit area) across the shear-band
boundary is proportional to K
T/a, where 
T = T − TR is
the instantaneous temperature difference between the shear
band (with a temperature T ) and glassy matrix (with room
temperature TR), K is thermal conductivity, and a is a char-
acteristic length with the same order of magnitude as shear
band thickness. Meanwhile, the heat energy is also produced
within the band by the work done by plastic deformation. The
dynamic equation for temperature evolution reads:

d
T

dt
= ασbε̇b

ρcp
− K
T

a
, (6)

where ρ and cp are the density and the heat capacity of the
glass material, respectively, and α is the fraction of plastic
work dissipated as heat.

Equations (4)–(6) describe the dynamics of a single shear
band under compression. Here, χ and 
T are two internal
state variables, k and v0 are two parameters which can be
adjusted, while other parameters are set as constants. We
perform a thorough theoretical analysis and numerical cal-
culations on the dynamic model. For analysis details, one
can see Text SI in the SM. The results show that the shear
band dynamic exhibits a chaotic state within some range
of k and v0. A typical example for k = 2000 and ε̇0 = 104

(ε̇0 is defined by ε̇0 = v0/λ) is shown in Fig. 3. As can be
seen, the self-similarity of attractor and sensitivity to initial
conditions of the chaotic state are characterized by the posi-
tive largest Lyapunov exponent (λ1 = 0.2489) and Lyapunov
dimension (DL = 1.2047). The self-similar torus destroyed
phase diagram and the irregular invariant of Poincaré map
[Figs. 3(b) and 3(c)] also imply a chaotic state. Arising from
the chaotic dynamics, the history diagrams of σb with time
display serrations with multiple magnitudes of stress drops,
as shown in Fig. 3(d). These characteristics are very similar to
those of hopping type-B bands in Portevin-Le Chatelier (PLC)
effect [51]. It is worth noting that with the chaotic dynamics
was also reported by Lemaître in the boundary lubrication by
using a full generalization of STZ theory as the constitutive
equations [52], which is similar to the stick-slip shear band
dynamics observed here.

In addition to the chaotic dynamic state, the shear band
dynamics also has a periodic solution when the external
strain rate ε̇0 and the elastic constant k are decreased. For
the sake of discussion, we replace σb with u = √

1 − σb as
a new variable, while keep χ and 
T unchanged. From
the theoretical analysis shown in Text SI in SM, (u, χ ,

T ) has a positive equilibrium point E3. For ε̇0 = 103 and
k = 100, E3 has a value (0.3256, 0.2063, 0.01341) with
characteristic roots μ1 = −9.18 × 104 and μ2,3 = ±0.128i,
indicating Hopf bifurcation emerging at E3. There are two
special points where degenerate Hopf bifurcation occurs: k =
92.69, ε̇0 = 202.35 and k = 1000, ε̇0 = 0. Figures 4(a) and
4(b) display the bifurcation diagram of the model with k
and ε̇0, respectively. From these diagrams, one can see that
the supercritical Hopf bifurcation arises at the point k = 100,
ε̇0 = 1415.8. The Hopf bifurcation is initially subcritical and
then becomes supercritical with increasing value of ε̇0, while
the direction of Hopf bifurcation cannot change with varying
k. In nonlinear dynamics, Hopf bifurcation is often associated
with the emergence of limit cycle. Figure 4(c) displays limit
cycles initiated from Hopf bifurcation for values of k and ε̇0

in the present model. The existence of limit cycles clearly
suggests the periodic oscillation in the system. The periodic
solution can also be verified by the numerically calculated
time profile of σb, which shows periodic stress serrations with
a fixed size [Fig. 4(d)].

IV. DISCUSSION

From experimental and theoretical analysis above, one
can see that a shear band could exhibit complex nonlinear
dynamics including chaos and periodic orbit. These dynamics
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FIG. 3. Chaotic dynamics of a single shear band. (a) Plot of Lyapunov exponent spectrum. The inset is the local amplification for the
spectrum. The largest Lyapunov exponent λ1 = 0.2489. (b) The phase diagram in the plane of σb − 
T , showing a self-similar destroyed
torus. (c) Poincaré map on the plane of χ = 0 with an irregular invariant. (d) Time history diagram of σb calculated under the initial condition
(1, 0.4, 1.5). All results are calculated at the same parameter values: k = 2000, ε̇0 = 104, ε̇s = 106, ε̇c = 105, and β = 104.

behaviors should have a profound effect on the shear-band
stability and the ultimate plasticity of MGs. Now let’s discuss
the correlation between the chaotic shear-band dynamics and
the plasticity fluctuation observed in experiments. Previous
studies showed that the stability of a single shear band can be
related to a critical parameter, such as a critical shear velocity
[21] or a critical elastic energy density [20] released during a
serrated event. Once a shear band reaches the state set by the
critical parameter, a runaway “defect”(such as cavitation or
microcracking) will be developed within the band according
to recent studies [53], resulting in the catastrophic materials
failure. The plastic strain at which the critical state appears
within the shear band defines the macroscopic plasticity of
MGs. Since shear banding process in compression often pro-
ceeds in a stick-slip manner, so the critical state for shear band
can be associated with a critical serrated event. According to
our present analysis, if the shear band dynamics is chaotic, the
appearance of the critical state for the shear-band instability
will be sensitive to initial conditions. Practically, there will be
tiny differences (e.g., on chemical compositions, free volume
contents, sample size, small deformation due to the bending
within a shear band [54,55], etc) due to experimental errors
during sample preparation and testing process. These tiny
differences will lead to slightly different initial conditions for
the shear banding and eventually are enlarged through the
inherent chaotic dynamics. As a result, the appearance for
the critical state at which the shear band become runaways

is unpredictable during deformation, resulting in the large
plasticity fluctuation of MGs, as observed in experiments.
The chaotic dynamic behavior of shear band found in MGs
is reminiscent of the “butterfly effect” as observed in many
complex dynamic systems [36], e.g., a butterfly flapping its
wings in Brazil can cause a hurricane in Texas.

To further illustrate the “butterfly” effect in the shear-band
mediated plasticity in MGs, we numerically calculated the
evolution of various variables of shear band with time in
the chaotic dynamics regime, as shown in Fig. 5. As can be
seen, when the initial conditions of (σb, χ,
T ) are slightly
changed from (0.91, 0.1975, 0.013) to (0.91, 0.2, 0.013), the
evolution of ε̇b within the shear band can be significantly
changed after t = 600s. Particularly, the serrated event with
the largest value of ε̇b which may cause the instability of shear
banding occurs at different times. By arbitrary choosing the
critical strain rate for the shear-band instability as ε̇b = 4500,
we made statistics on the critical time tc for the occurrence of
shear-band runaway event over a large number of parameter
sets of initial conditions. The probability distribution of tc
follows the Weibull distribution well [see Figs. 5(c) and
5(d)], in accordance with experimental results. The numerical
calculations further confirm the deterministic nature of the
complex shear band dynamics. As the elastic constant k and
the external strain rate ε̇0 are decreased, the chaotic dynamics
of the shear band is gradually transformed to the periodic
orbit. The periodic state is not so sensitive to initial conditions
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FIG. 4. Periodic dynamics of a single shear band (a) The calculated bifurcation diagram of the model with ε̇0 in the range of [1, 104] for
k = 100, ε̇s = 106, ε̇c = 105, and β = 105 under initial condition (0.91, 0.2, 0.013). (b) The calculated bifurcation diagram of the model for
ε̇0 = 103, ε̇s = 106, ε̇c = 105, and β = 105 under initial condition (0.91, 0.2, 0.013). From these diagrams, one can see that Hopf bifurcation
is initially subcritical and then becomes supercritical with increasing value of ε̇0, while the direction of Hopf bifurcation cannot change with
varying k. (c) The limit cycles bifurcated by Hopf bifurcation. (d) The time history diagram of σb corresponding to the periodic orbit.

and should correspond to the smaller plasticity fluctuation
for the same MG. It should be noted that the dynamic states
(chaos and periodic orbit) are only limited to the case of
a single dominant shear band. In this case, the probability
density distribution for the serration size displays a Gauss-like
or peak type distribution. For some special ductile MGs, they
could form a large number of multiple shear band simultane-
ously at the initial plastic deformation stage, and the plasticity
is often related to a self-organized critical (SOC) dynamics
arising from the interaction of a large number of multiple
shear bands [28,46]. For the SOC dynamics, the probability
density distribution of serration size often follows a power-law
scaling, indicating scale-free shear avalanches.

In general, the simple chaos requires at least three variables
in a dynamic system [32]. In previous stick-slip models, the
effective disorder temperature is considered as the only state
governing the internal evolution of the shear band. In these
cases, serrations formed by stick-slip shear banding show
a periodic behavior [26] rather than a chaotic behavior. In
our model, in addition to the effective disorder temperature,
we also consider the temperature rise as an internal state
variable. The effective disorder temperature is a measure
of the STZ density during deformation [56] and in fact is
a reflection of the structure disordering in MGs. Thus, the
interplay between structural disordering and the temperature
rise during deformation must play an important role in the

formation of chaotic shear band dynamics. In literature [1,8],
the structural disordering as a main cause for strain soft-
ening in MGs is well recognized, yet the temperature rise
within the shear band has long been debated. By spatially
and temporally resolved measurement on shear band velocity,
recent studies [57] showed that the maximum temperature rise
during shear band propagation is only a few tens of Kelvins.
This temperature rise is not enough to cause the significant
softening of glassy materials. Therefore, the thermal effect
is often believed to be a consequence of strain softening,
rather than its main cause before the final fracture of MGs.
The effect of temperature rise on the strain softening is also
neglected in many theoretical models for shear localization
[3–5]. However, our present analysis showed that the role of
temperature rise cannot be neglected in shear band dynamics,
especially in complicating shear band dynamics. From numer-
ical calculations on our model, we can see that for the periodic
orbit state, the calculated temperature rise 
T is small, in
the range of (0.01–0.15) TR, while for the chaotic dynamic
state, 
T could reach 2.5 TR, a value sufficient to cause the
runaway instability of the shear band. The large temperature
rise clearly results from the “butterfly effect” of shear band
dynamics. In the chaotic dynamic regime, the small initial
temperature rise can be amplified through interplaying with
the internal stress and the structural disordering in the shear
band. Conversely, the temperature rise also modulates the
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FIG. 5. Numerical calculations illustrating the sensitivity of shear band properties on the initial condition in the chaotic dynamic regime
for k = 100 and ε̇0 = 103. (a) Time evolution of resistant stress σb of a shear band under the initial condition (0.91, 0.1975, 0.013) (in the
blue line) and (0.91, 0.2, 0.013)(in the red line), respectively. (b) Time evolution of the strain rate within a shear band ε̇b, corresponding to (a).
(c) The count number histograms for critical time tc, when ε̇b reaches 4500 for the first time for 133 parameter sets of initial conditions from
(0.90901, 0.1975, 0.013) to (0.91,0.1975,0.013) with an interval of 0.00001 and from (0.91,0.197,0.013) to (0.91,0.2,0.013) with an interval
of 0.001. (d) The cumulative probability distribution of tc for 133 parameter sets of initial conditions, which can be well fitted by the Weibull
distribution with the fitted parameter β = 342.48 and m = 3.01.

other two variables (σb and χ ) during deformation, making the
shear band dynamics become complex. The current finding
suggests that the conventional view on the role of temperature
rise during the plastic flow of MGs should be reassessed.

In summary, we showed that a single shear band in MGs
exhibits complex chaotic dynamics through the combination
of experimental and theoretical analysis. We also demon-
strated that the experimentally observed large plasticity fluctu-
ation of MGs tested at the same conditions can be interpreted
from the chaotic shear-band dynamics, which could lead to
an uncertainty on the appearance of the critical condition
for runaway shear banding during deformation. Physically,
the chaotic shear-band dynamics arises from the interplay
between structural disordering and temperature rise within the
shear band. By tuning the deformation parameters, the chaotic
dynamics can be transformed to a periodic orbit state. This
applies to most bulk MGs since their deformation behavior
can be dominated by a single primary shear band. For a few
MGs whose behavior is dominated by a large number of mul-
tiple shear bands, the avalanchelike SOC dynamics resumes.
Our results suggest that the plastic flow of MGs is a complex
dynamic process, which is highly sensitive to initial condi-

tions and reminiscent of the “butterfly effect” as observed in
many complex dynamic systems. Finally, it is worth noting
that shear banding process in MGs resembles many dynamic
phenomena across different time and length scales, e.g., peel-
ing of adhesive tapes [46], friction and lubrication in industrial
process [58], seismic and geodetic fault slip [59], etc. Our
current finding may be useful to understanding the complex
nature of these dynamic systems, all of which one may
encounter in the broad discipline of nature and engineering.
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